Abstract
The objective of this study was to characterize intestinal phytate degradation and mineral utilization by 2 laying hen strains before and after the onset of egg laying using diets without or with a mineral phosphorus (P) supplement. One offspring of 10 roosters per strain (Lohmann Brown-classic [LB] and Lohmann LSL-classic [LSL]) was sacrificed before (wk 19) and after (wk 24) the onset of egg-laying activity and following 4 wk placement in a metabolic unit. Diets were corn-soybean meal-based and without supplemented P (P-) or with 1 g/kg supplemented P (P+) from monocalcium phosphate. In wk 19 and 24, the blood plasma and digesta of duodenum+jejunum and distal ileum were collected. The concentration of P in blood plasma was higher in hens fed P+ than P- (P < 0.001). In duodenum + jejunum and ileum content, the concentrations of InsP6, Ins(1,2,4,5,6)P5 and Ins(1,2,3,4,5)P5 were lower in P- than in P+ (P ≤ 0.009). In duodenum+jejunum, the concentrations of InsP6, Ins(1,2,4,5,6)P5 and Ins(1,2,3,4,5)P5 were lower in wk 24 than 19 and lower in LSL than LB hens (P < 0.001). The concentration of myo-inositol (MI) in duodenum + jejunum content was lower in wk 19 than 24 (P < 0.001). Following a 4-d total excreta collection, the retained amount of P was higher in P+ than P- (P < 0.001). Phosphorus retention was lower in LB hens fed P- than in other treatments (P × strain: P = 0.039). In the jejunal tissue, some genes related to intracellular InsP metabolism were higher expressed in LB than LSL hens. The renunciation of mineral P increased endogenous phytate degradation, but more P was retained with supplemented P. Differences in endogenous phytate degradation between the periods before and after the onset of egg laying might be attributed to different Ca concentrations in intestinal digesta caused by different Ca needs in both periods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.