Abstract
To elucidate the relationship between ethylene evolution from the grains and the appearance quality of rice, ten different rice genotypes were used to determine the ethylene evolution rate, 1-aminocylopropane-1-carboxylic acid (ACC) concentration in grains during grain filling and the appearance quality of rice, and the effects of chemical regulators on concentrations of ethylene and ACC in the grains during grain filling were also investigated to verify the roles of ethylene in the rice quality formation. The ethylene evolution rates and ACC concentrations in grains during the mid and late grain filling stages were very significantly and positively correlated with chalky kernel percentage and chalkiness. The cultivars with a low ACC concentration in grains exhibited a close amyloplast arrangement and small space between starch granules, whereas those with a high ACC concentration in grains showed a loose arrangement and wide space between the granules. Application of 1 μmol/L ACC to panicles at mid and late grain filling stages significantly loosened amyloplast arrangement and increased chalky kernel percentage, chalky area and chalkiness, and the results were reversed when 1 μmol/L amino-ethoxyvinylglycine, an inhibitor of ACC synthesis enzyme, was applied to panicles. A practice of moderate dry-wet alternate irrigation reduced ethylene evolution and ACC concentration in grains and thereby reduced chalkiness. The results suggested that ethylene and ACC in grains play an important role in the endosperm structure and appearance quality of rice, and the appearance quality would be improved by reducing ethylene evolution and ACC in grains through either variety breeding and selection, or chemical regulations or cultivation techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.