Abstract

AbstractVarious physicochemical, thermal and rheological properties of starches separated from Indian potato cultivars were related to each other using the Pearson correlation. Amylose content, water‐binding capacity (WBC), swelling power, solubility, ash content, transmittance, syneresis and consistency coefficient (K) were determined. Amylose content was significantly correlated with swelling power (r = 0.904), transmittance (r = 0.656) and syneresis (r = 0.777) of the starches. Thermal properties such as transition temperatures (To, Tp and Tc), gelatinisation range (R), gelatinisation enthalpy (ΔHgel) and peak height index (PHI) of the starches were measured using differential scanning calorimetry (DSC). To, Tp and Tc were positively correlated with swelling power and negatively correlated with solubility and WBC. PHI was positively correlated with WBC and negatively correlated with ash content and swelling power. R had a negative correlation with WBC (r = −0.726) and PHI (r = −0.737). A positive correlation between R and Tc was observed. WBC was negatively correlated with swelling power (r = −0.749). Syneresis of potato starches was positively correlated with transmittance, ash content, swelling power and amylose content. K was positively correlated with amylose content (r = 0.587). The results showed a significant variation in various functional and thermal properties of starches separated from different potato cultivars. Copyright © 2004 Society of Chemical Industry

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.