Abstract

To clarify the direction of microstructure design for improving stretch-flangeability, relationships of stretch-flangeability to microstructure and mechanical properties of ultra-high-strength dual-phase (DP) steels were investigated. Microstructure of relatively simple ferrite-martensite DP steels was modified by intercritical annealing, then the effects of microstructure modification on stretch-flangeability, tensile properties, and fracture resistance of the DP steels were systematically quantified. The hole-expansion ratio (HER) increased linearly with an increase the apparent fracture initiation energy, but was not significantly correlated with any individual microstructural properties of DP steels, which have been reported to correlate with HER (e.g., the fraction of martensite, the carbon content of martensite, or the hardness difference between ferrite and martensite). To increase the stretch-flangeability of an ultra-high-strength DP steels, its microstructure should be designed to increase its fracture toughness (i.e., microstructure with low mechanical heterogeneity).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.