Abstract

Experimental and clinical studies provided evidence in favor of complex relationships between sympathetic nervous system activity and salt-sensitivity of blood pressure. Genetic and acquired metabolic alterations associated with a tendency to retain salt and water may generate salt-sensitivity of blood pressure and shift the pressure-natriuresis curve to the right, promoting an increase in blood pressure. Sympathetic activation is a factor contributing to this result.Chronic high dietary salt intake is followed by a derangement in mechanisms of central sympathetic inhibition and then by an enhanced peripheral sympathetic tone. This, in turn, may generate salt-sensitivity of blood pressure by affecting renal hemodynamics, tubular sodium and water handling. Insulin resistance and sodium and water retention are prompted by high-fat (as well as high carbohydrate) diets, and by an increase in body fat mass. Also, aging is a condition of impaired interactions of the above factors. A gain in weight due to reduced physical activity, not followed by a parallel decrease in calorie intake, brings to a fall in insulin sensitivity. In many cases, the natural age-related decline of renal function is associated with a reduced physical exercise, hyperinsulinemia and sodium retention; sympathetic nervous system activity is enhanced and causes an increase in blood pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.