Abstract

AbstractWetlands are the most important natural source of methane (CH4) to the atmosphere, and there is still considerable uncertainty of CH4 flux and net carbon budgets of wetlands. This uncertainty is due in part to the complex role of wetland vegetation in controlling methane production, oxidation and transport, which challenge the modeling and forecast of CH4 fluxes. We combined CH4 and carbon dioxide (CO2) fluxes measured by the eddy covariance technique during two consecutive growing seasons with continuous measurements of water levels and water temperature in a Typha angustifolia L patch of a temperate wetland. We seek to evaluate the role of vegetation in CH4 flux processes. To this end, we determined the relationship between CH4 and CO2 fluxes, directly and indirectly linked to plant activity. Our results indicated significant but opposing relationships between CH4 and CO2 fluxes during the daytime and nighttime. Consequently, when analyzed on a diel timescale, this relationship was not significant. Both CH4 and CO2 fluxes were highly dependent on environmental drivers, and thus, the correlations observed at both the nighttime and daytime were likely the result of a shared response to environmental variables. Focusing on water temperature (the most commonly observed environmental variable in wetlands) and water level (the most commonly controlled one) as operational control variables for wetlands, we identified “hot” condition combinations when CH4 flux and net ecosystem CO2 uptake are maximized at half hourly and diel scales.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.