Abstract

Polyamine biosynthesis in Escherichia coli is regulated transcriptionally and post-translationally. Antizyme and ribosomal proteins S20 and L34 participate in post-translational inhibition of the polyamine biosynthetic enzymes ornithine and arginine decarboxylase. The aim of the present study was to investigate the significance of S20 and L34 in polyamine regulation in vivo. In vivo overexpression of S20 and L34 lowered the activities of ornithine and arginine decarboxylases and decreased total polyamine production. The levels of cadaverine, a related diamine whose synthesis is not regulated by S20 and L34, did not decrease but increased. The diminished ornithine and arginine decarboxylase activities are shown to result from reversible post-translational inhibition since the enzymes could be reactivated to normal levels upon titration of the inhibitors. The effects were specific as overexpression of eight other ribosomal proteins had no influence. Overexpression of ornithine decarboxylase results in elevated polyamine production and it increases S20 and L34 levels but not those of other ribosomal proteins. Ornithine depletion decreases S20 and L34 to normal levels in the ornithine decarboxylase overproducing cells. Immunoprecipitation experiments coupled with immunoblots indicated that ornithine and arginine decarboxylases physically interact with S20 and L34. This study shows that ribosomal proteins S20 and L34 can inhibit ornithine and arginine decarboxylases and polyamine biosynthesis in vivo. It is concluded that, unlike other basic ribosomal proteins and polycationic compounds which inhibit the activities of these enzymes only in vitro, S20 and L34 are biologically relevant in the regulation of the polyamine biosynthetic pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call