Abstract

The hydrolases and transferases that constitute the α-amylase family are multidomain proteins, but each has a catalytic domain in the form of a (β/α) 8-barrel, with the active site being at the C-terminal end of the barrel β-strands. Although the enzymes are believed to share the same catalytic acids and a common mechanism of action, they have been assigned to three separate families – 13, 70 and 77 – in the classification scheme for glycoside hydrolases and transferases that is based on amino acid sequence similarities. Each enzyme has one glutamic acid and two aspartic acid residues necessary for activity, while most enzymes of the family also contain two histidine residues critical for transition state stabilisation. These five residues occur in four short sequences conserved throughout the family, and within such sequences some key amino acid residues are related to enzyme specificity. A table is given showing motifs distinctive for each specificity as extracted from 316 sequences, which should aid in identifying the enzyme from primary structure information. Where appropriate, existing problems with identification of some enzymes of the family are pointed out. For enzymes of known three-dimensional structure, action is discussed in terms of molecular architecture. The sequence–specificity and structure–specificity relationships described may provide useful pointers for rational protein engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.