Abstract
We proposed a new approach to characterize the reverse osmosis (RO) permeability in conjunction with the macromolecular structures and inherent polymer properties for crosslinked and linear model aromatic polyamides. Aromatic polyamides were synthesized via interfacial reaction of phenylene diamines ( p- and m-phenylene diamines) with either tri-functional (trimesoyl chloride) or di-functional (terephthaloyl and isophthaloyl chlorides) acyl halides.The relaxation properties obtained by cross polarization/magic angle spinning (CP/MAS) 13C NMR spectroscopy, in conjunction with the chemical structures, built a bridge between the specific polymer properties and the RO performance of the aromatic polyamides. The spin-lattice relaxation time in the rotating frame, T 1 ρ and hence chain mobility seemed to be an important parameter to control the RO membrane permeability. The longer T 1 ρ resulted from the crosslinked aromatic polyamides, in which presence of the crosslinking retarded local polymer motion, and a lower water flux resulted. In contrast, the shorter T 1 ρ for the linear crosslinked polyamides played a significant role for the higher water flux.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.