Abstract

The antioxidant properties and the protective role of organic zinc (Zn) and copper (Cu) in white blood cells (WBCs) and spermatozoa were analyzed through quantification of superoxide dismutase 1 (SOD1), catalase (CAT), glutathione peroxidase 4 (GPx4) and nuclear factor erythroid 2-like 2 (NFE2L2) and correlations were determined with sperm functional characteristics in Osmanabadi bucks. Bucks (aged 5 months; n = 40) were divided into ten groups, and the dietary treatments comprised of a control and nine treatment groups as follows: organic Zn as Zn 20, Zn 40 and Zn 60, organic Cu as Cu 12.5, Cu 25, Cu 37.5 and combined organic Zn and Cu as Zn 20+Cu 12.5, Zn 40+Cu 25, Zn 60+Cu 37.5, respectively per kg dry matter for a period of 8 months. The blood (120 and 240 days) and semen (240 days: 40 × 4 = 160) samples were collected from 40 bucks. In WBCs: the relative abundance of mRNA for SOD1, CAT, GPx4, NFE2L2 was greater (P < 0.05) in (120 and 240 days) in majority of the mineral supplemented animals. In spermatozoa: the relative abundance of SOD1, NFE2L2, GPx4 and CAT mRNA was greater (P < 0.05) in selected treatment groups. The abundance of SOD1 mRNA in WBCs was positively correlated (P < 0.05) with sperm mass motility (r = 0.692, P = 0.027). The abundance of GPx4 mRNA was negatively correlated (P < 0.05) with type A sperm (straightness; STR) > 85% and amplitude of lateral head displacement (ALH) > 2.5 μm/ s) (r = −0.711, P = 0.021) and (P < 0.05) positively correlated with sperm viability (r = 0.669, P = 0.035). Organic Zn and Cu supplementation was associated with an increase in the expression of antioxidant defense enzyme genes in bucks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call