Abstract

Background and aimsCardiovascular disease (CVD) is known to be linked with metabolic associated fatty liver disease and type 2 diabetes, but few studies assessed this relationship in prediabetes, especially among women, who are at greater risk of CVD. We aimed to evaluate cardiac alterations and its relationship with hepatic lipid metabolism in prediabetic female rats submitted to high-fat-high-sucrose diet (HFS). Methods and resultsWistar female rats were divided into 2 groups fed for 5 months with standard or HFS diet. We analyzed cardiac morphology, function, perfusion and fibrosis by Magnetic Resonance Imaging. Hepatic lipid contents along with inflammation and lipid metabolism gene expression were assessed. Five months of HFS diet induced glucose intolerance (p < 0.05), cardiac remodeling characterized by increased left-ventricular volume, wall thickness and mass (p < 0.05). No significant differences were found in left-ventricular ejection fraction and cardiac fibrosis but increased myocardial perfusion (p < 0.01) and reduced cardiac index (p < 0.05) were shown. HFS diet induced hepatic lipid accumulation with increased total lipid mass (p < 0.001) and triglyceride contents (p < 0.05), but also increased mitochondrial (CPT1a, MCAD; (p < 0.001; p < 0.05) and peroxisomal (ACO, LCAD; (p < 0.05; p < 0.001) β-oxidation gene expression. Myocardial wall thickness and perfusion were correlated with hepatic β-oxidation genes expression. Furthermore, myocardial perfusion was also correlated with hepatic lipid content and glucose intolerance. ConclusionThis study brings new insights on the relationship between cardiac sub-clinical alterations and hepatic metabolism in female prediabetic rats. Further studies are warranted to explore its involvement in the higher CVD risk observed among prediabetic women.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call