Abstract

Although the functions of basic leucine zipper (bZIP) family transcription factors in the regulation of various abiotic stresses are beginning to be unveiled, the precise roles of bZIP proteins in plants coping with submergence stress remain unclear. Here we identified a bZIP gene GmbZIP71-4 from soybean, which localized in the nucleus. The GmbZIP71-4 over-expressed tabocco line showed reduced submergence resistance due to the decreased abscisic acid (ABA) content. GO and KEGG pathway analysis based on chromatin immunoprecipitation assay sequencing (ChIP-seq) indicated that the differences expressed genes between submergence treatment and control groups were specially enriched in plant hormone signal transduction items, especially those in response to ABA. Electrophoretic mobility shift assays (EMSA) demonstrated that GmbZIP71-4 bound to the promoter of GmABF2 gene, which is consistent with the ChIP-qPCR results. GmbZIP71-4 function as a negative regulator of soybean in responding to submergence stress through manipulating ABA signaling pathway. This findings will set a solid foundation for the understanding of submergence resistance in plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call