Abstract

Measurements of physical tree crown dimensions were of subjective character in the past, even though they can be considered important for the management of many silvicultural operations, such as timing of thinning operations. In our study we investigated if and how measures of physical crown dimensions of trees differed when quantified conventionally versus based on 3D-terrestrial laser scanning and how they are related to basal area increment. Some 24 randomly selected predominant or dominant beech trees between 90 and 110 yrs of age and of varying height were used as study trees. We hypothesized that tree crown dimensions obtained from scans are more closely related to tree radial growth than those obtained from conventional field measurements. It was found that from a variety of compared crown size characteristics the scan-based tree attributes mean crown radius, maximum area of the crown and crown projection area were most closely related to individual tree growth. We conclude that the horizontal extension of a tree crown in general is to be considered one of the most important drivers of tree growth. We also conclude that terrestrial laser scanning is a powerful tool to reliably measure physical crown dimensions and TLS-based measurements are more reliable than conventional ones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.