Abstract

An attempt was made in this study to relate the release of a highly water-soluble model drug from tablet matrices of poly(vinyl alcohol) (PVAL) with the factors that may affect the release behavior. Swelling was evaluated using a simple projection method. The swollen layer was photographed to monitor its thickness. The polymer and drug dissolution were determined simultaneously by spectrophotometric methods. The resulting change of tablet area showed that the process of swelling occurred in three different stages that were intimately related to polymer dissolution: (a) a rapid initial swelling, resulting in an increased area; (b) a period with an approximately constant area; and (c) a decrease of the tablet area. In spite of the significant dissolution of PVAL during the release process, the thickness of the gel layer gradually increased. Thus, the delivery was governed by the drug concentration gradient along the diffusional path length. The drug release appeared to be controlled by a diffusion process according to Higuchi-type kinetics. The data analysis of drug and polymer profiles confirmed the diffusional mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.