Abstract

Drug release from planar matrix systems has been investigated with special emphasis on the influence of a finite dissolution rate on the drug release profile. A mathematical model of the drug dissolution and release processes was formulated in terms of two coupled nonlinear partial differential equations (PDEs). These were solved numerically by using well-established FORTRAN routines. An approximate analytical solution, valid during the early stages of the release process, was derived. The analytical solution was compared to the numerical one and to drug release models existing in the literature. From this comparison, it was established that the analytical approximation provided a good description of the major part of the release profile, irrespective of the dissolution rate. Existing literature models, based on instantaneous dissolution, were found to agree with the numerical solution only when drug dissolution proceeded very rapidly in comparison with the diffusion process. Consequently, the new analytical short-time approximation of the drug release complements the formulas existing in the literature, since it provides a superior description of the release of slowly dissolving drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.