Abstract

The development of lithography processes with sub-10 nm resolution is challenging. Stochastic phenomena such as line width roughness (LWR) are significant problems. In this study, the feasibility of sub-10 nm fabrication using chemically amplified extreme ultraviolet resists with photodecomposable quenchers was investigated from the viewpoint of the suppression of LWR. The relationship between sensitizer concentration (the sum of acid generator and photodecomposable quencher concentrations) and resist performance was clarified, using the simulation based on the sensitization and reaction mechanisms of chemically amplified resists. For the total sensitizer concentration of 0.5 nm−3 and the effective reaction radius for the deprotection of 0.1 nm, the reachable half-pitch while maintaining 10% critical dimension (CD) LWR was 11 nm. The reachable half-pitch was 7 nm for 20% CD LWR. The increase in the effective reaction radius is required to realize the sub-10 nm fabrication with 10% CD LWR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call