Abstract

This paper is focused on the application of Infrared Thermography to non-standard rock specimens, in terms of size and deterioration conditions, of Hungarian tuff to monitor their cooling process and to look for a relationship between the rock Cooling Rate Index and the porosity. Literature data agree on the potential of Infrared Thermography for the indirect estimation of rock porosity in fresh specimens through the IRTest, but this technique has never been tested on non-standard specimens. To this purpose, tests on three varieties of Hungarian tuffs were carried out. These materials were selected for their cultural importance linked to their usage as building stones and in other historical applications in Northern Hungary. Tuff specimens underwent a fixed number of salt crystallization cycles. The Cooling Rate Index (CRI) for each specimen was calculated according to the literature experience and correlated to their porosity estimated by water, helium, and mercury intrusion. The results show that the rock cooling process is related to porosity since more porous rocks are characterized by faster cooling. Positive linear trends were achieved for weathered specimens considering 20 min monitoring (CRI20), which is double the time suitable for untreated rocks. The reason should be searched in salt crystallization’s effects on the rock texture, paving the way to further studies on this pioneering branch of technological application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call