Abstract

The purpose of this study was to investigate the effect of the use of rubber powder from tire recovery on the dynamic loading performance of CPB. Finally, it is concluded that using recycled rubber material to backfill mine paste is helpful in reducing waste tire pollution and improving the impact resistance of the backfill body. The dynamic compressive strength, Dynamic Increase Factor (DIF), peak dynamic load strain, and dynamic load elastic modulus of the samples composed of slag, Portland cement, wastewater, and rubber powder were determined. Through the analysis of the experimental data, it can be seen that the recycled rubber reduces the dynamic compressive strength and DIF of the specimen but increases the peak dynamic load strain and dynamic load elastic modulus and other characteristics, and enhances the ability of the filled body to absorb elastic strain energy. The results show that recycled rubber can increase the deformation ability of the filler and improve the impact resistance of the filler. The results of this study provide valuable information and industrial applications for the effective management of solid waste based on sustainable development and the circular economy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call