Abstract

BackgroundIn vertebrates, the skeletal elements of the jaw, together with the connective tissues and tendons, originate from neural crest cells, while the associated muscles derive mainly from cranial mesoderm. Previous studies have shown that neural crest cells migrate in close association with cranial mesoderm and then circumscribe but do not penetrate the core of muscle precursor cells of the branchial arches at early stages of development, thus defining a sharp boundary between neural crest cells and mesodermal muscle progenitor cells. Tendons constitute one of the neural crest derivatives likely to interact with muscle formation. However, head tendon formation has not been studied, nor have tendon and muscle interactions in the head.Methodology/Principal FindingsReinvestigation of the relationship between cranial neural crest cells and muscle precursor cells during development of the first branchial arch, using quail/chick chimeras and molecular markers revealed several novel features concerning the interface between neural crest cells and mesoderm. We observed that neural crest cells migrate into the cephalic mesoderm containing myogenic precursor cells, leading to the presence of neural crest cells inside the mesodermal core of the first branchial arch. We have also established that all the forming tendons associated with branchiomeric and eye muscles are of neural crest origin and express the Scleraxis marker in chick and mouse embryos. Moreover, analysis of Scleraxis expression in the absence of branchiomeric muscles in Tbx1−/− mutant mice, showed that muscles are not necessary for the initiation of tendon formation but are required for further tendon development.Conclusions/SignificanceThis results show that neural crest cells and muscle progenitor cells are more extensively mixed than previously believed during arch development. In addition, our results show that interactions between muscles and tendons during craniofacial development are similar to those observed in the limb, despite the distinct embryological origin of these cell types in the head.

Highlights

  • Craniofacial development requires the orchestrated integration of multiple tissue interactions

  • At HH20, MyoR was strongly expressed in the chick branchial arches in addition to the hypaxial lips of the interlimb somites and muscle progenitors migrating to the limb buds (Figure. 1A), [40]

  • Our quail into chick transplantations combined with our molecular analysis using markers for both cell types were not consistent with a sharp interface between neural crest cells and cephalic paraxial mesoderm

Read more

Summary

Introduction

Craniofacial development requires the orchestrated integration of multiple tissue interactions. Branchial arches are composed of pharyngeal endoderm, surface ectoderm, and two mesenchymal cell populations, originating from the neural crest and from cranial mesoderm, respectively. Mapping of the cephalic neural folds, using quail chick chimeras, retroviral and DiI injections have shown that neural crest cells filling the branchial arches give rise to all the skeletal elements, connective tissues and tendons of the jaw, while the mesodermal core gives rise to myogenic cells of the jaw muscles [3,4,5,6,7,8,9,10]. The skeletal elements of the jaw, together with the connective tissues and tendons, originate from neural crest cells, while the associated muscles derive mainly from cranial mesoderm. Head tendon formation has not been studied, nor have tendon and muscle interactions in the head

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.