Abstract

Relations between a net electrical output power and dimensions of components in radial build are investigated based on the ITER plasma performance to develop a conceptual design of DEMO with the net electrical output power of several hundred MW. Reducing the dimensions of in-vessel components and increasing the thickness of the toroidal field coil contribute to strengthen the toroidal magnetic field at plasma, which brings about increase in a net electrical output power. The relation between the minimum plasma major radius and the maximum net electrical output power is clarified. Furthermore effects of improvements in the ITER plasma performance on the net electricity are also analyzed; indicating the increase of normalized beta could have advantage from the viewpoint of the divertor heat load because the increase of synchrotron radiation loss power contributes to reduce the divertor heat load, though the higher energy confinement is required.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call