Abstract
Novel fibrous Al2O3–(m-ZrO2)/t-ZrO2 (m, monoclinic; t, tetragonal) composites having a core/shell structure were fabricated by multi-extrusion, and their microstructures and material properties were investigated depending on the number of extrusions. The composites acquired a homogeneously fine fibrous structure as the number of extrusions increased. The bending strength and fracture toughness increased remarkably as the number of extrusions increased. In the fracture surface of the second passed composite, an Al2O3–(m-ZrO2) core region appeared, flat type, although some local regions existed with an intergranular fracture. However, the fracture mode of the t-ZrO2 region was of intergranular type having a sharp and rough surface. In the composite made by the fifth passed extrusion, the fracture strength and toughness values were high at about 665 MPa and 9.6 MPa·m1/2, respectively. The main fracture mode was a typical intergranular mode having a rough fracture surface, and the main multi-toughening was because of mechanisms such as crack bridging, microcracking, and phase transformation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.