Abstract

Abstract As the most commonly used technology to exploit tight dolomite reservoirs, acid fracturing usually begins with injecting pad fluid to create rough-surface fractures, followed by pumping acid to form non-uniform etching on fracture surfaces. Thus, the etching pattern and acid fracture conductivity depend largely on initial character of rough-surface fractures. In this work, experiments were conducted to examine the effects of initial roughness and mechanical property of fracture surface on acid fracture conductivity. Eight artificially split core samples were collected from tight dolomite outcrops and classified into three categories based on the surface topography and splitting force curve. Rough fracture surfaces were scanned utilizing the 3D laser scanner. Then, dynamic acid etching tests were conducted, varying the acid flow rate and acid-rock contact time. Besides, the roughness of fracture surfaces were measured utilizing the 3D laser scanner again. After that, acid fracture conductivity was determined. The effects of acid flow rate, acid-rock contact time, fracture surface topography and mechanical property on acid etching and acid fracture conductivity were discussed. The experimental results demonstrated that the initial fracture surface topography and acid flow rate jointly controlled the acid etching pattern and the resulting acid fracture surface topography. The orientation of the fractures distributed on the fracture surface had significant effects on the acid fracture conductivity. Dissolved mass increased with longer acid-rock contact time. Longer acid-rock contact time brought higher acid fracture conductivity under low closure stress, while shorter contact time sustained higher acid fracture conductivity under high closure stress. Higher maximum splitting force referred to higher mechanical property, and more breaking stages referred to more microfractures developed. Rock samples with higher maximum splitting force and only one breaking stage exhibited higher acid fracture conductivity. This paper provides a systematic method to study the effects of initial roughness and mechanical property of fracture surfaces on acid fracture conductivity. Compared with the results based on smooth-surface fracture, the experimental results based on rough-surface fracture can guide acid fracturing design and optimization in a more accurate way. Accordingly, a cost-effective stimulation outcome can be expected.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call