Abstract

Vernalization response and low-temperature acclimation are survival mechanisms that cereals have evolved to cope with low-temperature stress. Both responses have similar optimum temperature ranges for induction, and they are controlled by genetic systems that are interrelated. It has also been suggested that the completion of vernalization is responsible for the gradual loss in low-temperature tolerance observed in winter cereals maintained for long periods of time at temperatures in the optimum range for low-temperature acclimation. In the present study, two experiments were conducted with the objective of clarifying the relationship between vernalization response and low-temperature tolerance in wheat (Triticum aestivum L.) and rye (Secale cereale L.). The plants of all cultivars began to low-temperature acclimate at a rapid rate when exposed to a constant 4 °C. The rate of change in low-temperature tolerance then gradually slowed and eventually started to decline, producing a curvilinear relationship between low-temperature tolerance and stage of acclimation. A close relationship was observed between the time to vernalization saturation and the start of the decline in low-temperature tolerance of cultivars held at 4 °C. However, cereal plants retained at least a partial ability to low-temperature acclimate following exposure to warm temperatures after vernalization saturation, indicating that vernalization saturation does not result in a "switching off" of the low-temperature tolerance genes. The possibility that vernalization genes have a more subtle regulatory role in the expression of low-temperature tolerance genes could not be ruled out, and future avenues for investigation are discussed. Key words: Cold hardiness, winter hardiness, cold resistance, low-temperature acclimation, deacclimation, vernalization, wheat, rye

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.