Abstract

Araus, J. L., Alegre, L., Tapia, L. and Calafell, R. 1986. Relationship between leaf structure and gas exchange in wheat leaves at different insertion levels.—J. exp. Bot. 37: 1323-1333. Net photosynthesis rate (Pn), stomatal conductance to C02 and residual conductance to C02 were measured in the last six leaves (the sixth or flag leaf and the preceding five leaves) of Triticum aestivum L. cv. Kolibri plants grown in Mediterranean conditions. Recently fully expanded leaves of well-watered plants were always used. Measurements were made at saturating photosynthetic photon flux density, and at ambient C02 and 02 levels. The specific leaf area, total organic nitrogen content, some anatomical characteristics, and other parameters, were measured on the same leaves used for gas exchange experiments. A progressive xeromorphic adaptation in the leaf structure was observed with increasing leaf insertion levels. Furthermore, mesophyll cell volume per unit leaf area (VmtJA) decreased by 52-6% from the first leaf to the flag leaf. Mesophyll cell area per unit leaf area also decreased, but only by 24-5%. However, nitrogen content per unit mesophyll cell volume increased by 50-6% from the first leaf to the flag leaf. This increase could be associated to an observed higher number of chloroplast cross-sections per mm2 of mesophyll cell cross-sectional area in the flag leaf: values of 23 000 in the first leaf and 48 000 in the flag leaf were obtained. Pn per unit leaf area remained fairly constant at the different insertion levels: values of 33-83 + 0-93 mg dm 2 h1 and 32-32 + 1-61 mg dm2 h1 were obtained for the first leaf and the flag leaf, respectively. Residual conductance, however, decreased by 18-2% from the first leaf to the flag leaf. Stomatal conductance increased by 41-7%. The steadiness in Pn per unit leaf area across the leaf insertion levels could be mainly accounted for by an opposing effect between a decrease in VmcJA and a more closely packed arrangement of photosynthetic apparatus. Adaptative significance of structural changes with increasing leaf insertion levels and the steadiness in Pn per unit leaf area was studied. Key words—Photosynthesis, structure, wheat. Correspondence to: Department of Plant Physiology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call