Abstract

Aerosol deposition method (ADM) is a technique to form dense films by impacting solid particles to a substrate at room temperature. To improve the deposition efficiency in ADM, the relationship between the impact velocity of Al2O3 particles and the deposition efficiency was investigated in this study. Relative difference in impact particle velocity was evaluated by the increment percentage of the substrate surface area after deposition (ΔS). It is thought that the increase of ΔS means the increase of the impact particle velocity. When ΔS was lower than 10 %, the deposition efficiency increased from 0.082 to 0.104 % as ΔS increased from 3.46 to 9.25 %. Increasing impact particle velocity could promote the bonding between the particles themselves. On the other hand, when ΔS was higher than 10 %, the erosion of the film was observed and the deposition efficiency decreased to about 0.02 % as ΔS increased to about 40 %. SEM observation revealed that cracks parallel to the film surface were propagated. There is a possibility that this tendency of the deposition efficiency toward the impact particle velocity is common among the methods for forming ceramic films by impacting solid ceramic particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.