Abstract

The effect of Escherichia coli growth rate on its susceptibility to ciprofloxacin was investigated using bacteria grown on different carbon sources and harboring mutations in genes encoding tricarboxylic acid cycle enzymes. A 1-h treatment of the wild type (wt) grown on glucose, succinate, malate, α-ketoglutarate or acetate with 0.3 μg ml-1 ciprofloxacin decreased the number of surviving cells (CFU ml-1), 560, 110, 74, 62 and 5 times, respectively. Among the mutants tested, sucB strain, which grew 1.75 times slower than wt, was 7.4-fold more tolerant to 0.3 μg ml-1 of ciprofloxacin than wt. Strong inverse correlations between log(CFU ml-1) after 1-h exposure to 0.3 and 3.0 μg ml-1 ciprofloxacin and the specific growth rate prior to antibiotic treatment (r = - 0.93 and -0.96, respectively) were observed. Data from the current and previous studies on the inhibitory effect of ciprofloxacin on cultures exhibiting a wide range of growth rates (0.01-1.3 h-1) were collated. Statistical analysis revealed a significant inverse correlation between log(CFU ml-1) after exposure to 3.0 μg ml-1 of ciprofloxacin and the specific bacterial growth rate prior to antibiotic exposure (r = -0.92). These data may be used in a design of antibiotic treatment protocols.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.