Abstract

In order to explore the relationship between the time processes of solar radiation and sap flow, sap flow velocity (SFV) of Platycladus orientalis and Pinus tabulaeformis, effective solar radiation (ESR) and other environmental factors were synchronously monitored for one year in the Beijing Western Mountains by using a thermal dissipation probe (TDP) system and an automatic weather station. Results showed significant differences between changes in diurnal characteristics of ESR and sap flow in sunny days during three seasons. Starting times of sap flow occurred generally 1.5–3 hours later than those of solar radiation and there were small differences between Platycladus orientalis and Pinus tabulaeformis. But peak times and stopping times of sap flow varied considerably with large contrasts in ESR. The duration of sap flow showed clear differences among the seasons owing to the variable rhythms of climate factors in Beijing. Fluctuation amplitude in the duration of sap flow remained relatively stable during the autumn but changed greatly during spring and summer. Changes in diurnal sap flow velocity of both Platycladus orientalis and Pinus tabulaeformis were about 0–3 hours later than those of ESR but with the same configuration. The start of sap flow was mainly induced by the sudden intensification of ESR (sunrise effect). Seasonal models of SFV indicated that a cubic equation had the best fit. It was more practical to simulate seasonal water consumption models of trees with ESR. In further investigations, these models should be optimized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.