Abstract

Copper-Nickel alloy pipes in marine engineering have been suffering severe seawater corrosion and erosion-corrosion. In this work, six kinds of Cu-Ni alloy pipes with different service lives delivered by two manufacturers were used to clarify the relationship between corrosion resistance and microstructure. The corrosion behaviors of the samples in 3.5 wt.% NaCl solution were studied by electrochemical measurements. Chemical composition, grain size distribution, crystallographic orientation, and grain boundary characterization distribution (GBCD) were investigated by energy-dispersive spectrometry (EDS), metallography and electron backscattered diffraction (EBSD) technology. There were no obvious differences in chemical composition and GBCD in contrast with size and uniformity of grains. Pipes with large grains and a broader grain size distribution had better corrosion resistance. It was also found that the accuracy of experimental data greatly depended on the quality of the sample surface in EBSD analysis. The scratches and contamination during sample preparation have a strong impact on the imaging quality and the calculation of GBCD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.