Abstract

To investigate the effect of blue light on apoptosis and mitochondrial permeability transition (MPT) of cultured human retinal pigment epithelium (RPE) cells in vitro. Human RPE cells were exposed to blue light (wave length 470 -490 nm). The present study consisted of three parts. Part one studied the effect of various intensities of blue light on the RPE cells. Cells were irradiated with (500+/-100) lx (group 1) , (2000+/-500) lx (group 2) and (3000+/-500)lx ( group 3) blue light, and followed by 24 hours observation. Part two studied the effect of various duration of blue light at identical intensity on the RPE cells. For the study on various subtypes of RPE cells, cells were irradiated by blue light at (2000+/-500) x for 6, 12, and 24 hours. For the study of mitochondrial membrane potential, cells were irradiated for 3, 6, and 12 hours. Part three studied cells irradiated with blue light at identical intensity and duration, but with various prolongation of post-exposure culture. The prolongation of post-exposure culture was 6, 12, 24, and 36 hours. Phototoxicity was quantified at various periods after exposure by staining of the nuclei of membrane-compromised cells, by TdT-dUTP terminal nick-end labeling (TUNEL) of apoptotic cells and by Annexin V labeling for phosphatidylserine exposure. Transmission electronmicroscopy was used to determine the ultrastructure changes of RPE cells. Mitochondrial membrane potential ( deltaPsim ) was measured by rhodamine 123 staining and subsequent flow cytometry. Cytochrome C activity was assayed by ELISA. Caspase-3 was detected by colorimetric assay. TUNEL-positive labeling cells in first group of part two study showed cell shrinkage, membrane blebbing, apoptotic body, condensation and fragmentation of chromatin. Mitochondrial swelling, extinction of inner mitochondrial membrane ridge, dilation of rough endoplasmic reticulum and increase of the lysosome were also observed in transmission electronmicroscopy. Blue light at (500 +/- 100) x intensity did not induce damage to RPE cells, but decrease of delta Psim was observed. A significant increase of apoptotic, apoptotic necrotic and necrotic percentages, as well as significant decrease of deltaPsim were observed at higher light intensity in part one study. Increase of apoptotic percentage was the main response to shorter exposure of blue light. Increase of apoptotic necrotic and necrotic percentage and pronounced decrease of deltaPsim occurred in cells irradiated by longer exposure in part two study. In part 3 study, apoptotic response was increased gradually during 6 and 12 hours prolongation of post-exposure culture, more apoptotic necrosis or necrosis were found after post-exposure 24 hours. Decrease of deltaPsim was observed in 6 hours prolongation of post-exposure culture and lasting for 48 hours. The concentration of cytochrome C was significantly increased in post-exposure 24 and 36 hours, without any changes of Caspase-3 activity. Blue light exposure can induce damages to human RPE cells in vitro, which include apoptosis, apoptotic necrosis and necrosis. These changes are caused by triggering the mitochondrial permeability transition, which results in decrease of deltaPsim and release of cytochrome C. deltaPsim can be used as a earlier parameter of blue light-induced apoptosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call