Abstract

Seasonal and spatial variations in bacterial abundance, biomass and production in a recently flooded reservoir were followed for 2 consecutive years, in conjunction with phytoplankton biomass (chlorophyll a) and activity (primary production). Between the 2 years of the study, the mean value of primary production remained constant, while those of the chlorophyll a concentration, bacterial abundance (BA), bacterial biomass (BB) and bacterial production (BP) decreased. The observed trends of the bacterial variables were linked to changes in the relative importance of allochthonous dissolved organic matter. Moreover, this factor would explain discrepancies observed between the slope of the model II regression equations established from results of the present study and those of the predictive models from the literature, relating to bacterial and phytoplankton variables. An estimate of the carbon budget indicated that 22 and 5% of the ambient primary production in the Sep Reservoir might be channeled through the microbial loop via BP during the 1st and 2nd year of the study, respectively. We conclude that heterotrophic BP in the Sep Reservoir may, on occasion, represent a significant source of carbon for higher order consumers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call