Abstract

Reed switches have been used in various fields of applications due to excellent reliability and compactness. The progress of electronics is leading to increasing demand for enhanced functions of the reed switch. One such demand is high breakdown voltage between contacts. To achieve the improvement in breakdown voltage, fundamental research on discharge phenomena is very important. This time, we studied the relationship between applied voltage to cause discharge and movement of carriers for rhodium-plated contact reed switches. Using Auger electron spectroscopy (AES), we analyzed contact surfaces before and after discharge caused by various applied voltages. The amount of nitrogen and amount of oxygen were found to be increased on the cathode surface and on the anode surface, respectively, after discharge. Furthermore, we found that this increase was accelerated by enhancing applied voltage to cause discharge. On the contrary, the amount of oxygen was found to be decreased on the cathode surface after discharge. We found that this decrease was also accelerated by enhancing applied voltage to cause discharge. These results revealed that the nitrogen cation and oxygen anion moved as carriers through discharge and that this movement was accelerated by increasing applied voltage to cause discharge. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.