Abstract

In this study, we aimed to examine the relationships between antibiotic resistance, biofilm formation, and biofilm-specific resistance in clinical isolates of Acinetobacter baumannii. The tested 272 isolates were collected from several hospitals in China during 2010–2013. Biofilm-forming capacities were evaluated using the crystal violet staining method. Antibiotic resistance/susceptibility profiles to 21 antibiotics were assessed using VITEK 2 system, broth microdilution method or the Kirby-Bauer disc diffusion method. The minimum inhibitory concentration (MIC) and minimum biofilm eradication concentration (MBEC) to cefotaxime, imipenem, and ciprofloxacin were evaluated using micro dilution assays. Genetic relatedness of the isolates was also analyzed by pulsed-field gel electrophoresis (PFGE) and plasmid profile. Among all the 272 isolates, 31 were multidrug-resistant (MDR), and 166 were extensively drug-resistant (XDR). PFGE typing revealed 167 pattern types and 103 clusters with a similarity of 80%. MDR and XDR isolates built up the main prevalent genotypes. Most of the non-MDR isolates were distributed in a scattered pattern. Additionally, 249 isolates exhibited biofilm formation, among which 63 were stronger biofilm formers than type strain ATCC19606. Population that exhibited more robust biofilm formation likely contained larger proportion of non-MDR isolates. Isolates with higher level of resistance tended to form weaker biofilms. The MBECs for cefotaxime, imipenem, and ciprofloxacin showed a positive correlation with corresponding MICs, while the enhancement in resistance occurred independent of the quantity of biofilm biomass produced. Results from this study imply that biofilm acts as a mechanism for bacteria to get a better survival, especially in isolates with resistance level not high enough. Moreover, even though biofilms formed by isolates with high level of resistance are always weak, they could still provide similar level of protection for the isolates. Further explorations genetically would improve our understanding of these processes and provide novel insights in the therapeutics and prevention against A. baumannii biofilm-related infections.

Highlights

  • Acinetobacter baumannii is an important nosocomial pathogen that is responsible for a wide range of human infections, resulting in high levels of morbidity and mortality (Bergogne-Berezin and Towner, 1996)

  • We examined antibiotic resistance, biofilm formation, and biofilm-specific resistance in 272 clinical A. baumannii isolated from patients in China

  • Antibiotic resistance in A. baumannii is an issue of increasing concern

Read more

Summary

Introduction

Acinetobacter baumannii is an important nosocomial pathogen that is responsible for a wide range of human infections, resulting in high levels of morbidity and mortality (Bergogne-Berezin and Towner, 1996). Due to the high prevalence of multidrugresistant (MDR) and extensively drug-resistant (XDR) isolates, A. baumannii has been identified among the top seven pathogens threatening our healthcare-delivery system and as a prime example of unmet medical need (Talbot et al, 2006). Given the tremendous capacity for acquiring antibiotic resistance determinants, A. baumannii may be leaving us few effective therapeutic options (Perez et al, 2008). This is not the only reason antibiotics fail, and for many occasions, it may not even be the main reason (Levin and Rozen, 2006). Biofilm formation is another effective way for bacteria to survive in the presence of antibiotics (Hall-Stoodley et al, 2004), especially for A. baumannii which is one of the most common bacterial causes of biofilm-related contamination of medical devices (Singhai et al, 2012)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call