Abstract

PurposeAlthough strong evidence suggests that ghrelin plays an important role in regulating energy balance, the effects of acylated ghrelin (AG) and deacylated ghrelin (DAG) on fat mass are largely undefined. This study aimed to investigate the differential associations of both forms of ghrelin with insulin resistance and body fat mass in patients with type 2 diabetes mellitus (T2DM).Patients and MethodsA total of 162 patients with type 2 diabetes were recruited and classified based on BMI and visceral fat area (VFA) as VFA normal group (n = 78), normal-BMI VFA obesity group (n = 20) and high-BMI VFA obesity group (n = 64). VFA and subcutaneous fat area (SFA) were detected by bioelectrical impedance analysis. Blood samples were collected to measure fasting glucose, insulin, lipids, AG and DAG levels after clinical examination.ResultsCompared with VFA normal group, DAG levels were significantly lower (421.7 ± 106.0 and 388.7 ± 96.5 pg/mL vs 524.4 ± 141.5 pg/mL, P < 0.01) in the two VFA obesity groups. No significant difference was found in AG levels within three groups. Among all subjects, BMI, VFA, SFA, fasting insulin and HOMA-IR were negatively correlated with DAG but positively with AG/DAG ratio (P < 0.01). In contrast, AG was positively correlated with HOMA-IR and fasting glucose (P < 0.01). Multiple stepwise regression analysis showed that fasting glucose was the independent factor of AG, VFA and HOMA-IR were the independent factors related to DAG.ConclusionDAG levels have a strong negative association with excess body fat mass and insulin resistance, whereas AG levels are closely related to elevated blood glucose levels in T2DM patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call