Abstract
The relationship of microbial community and cometabolic consumption of 2-chlorophenol (2-CP) in a nitrifying sequencing batch reactor (SBR) was studied. The assessment of the population dynamics of the nitrifying sludge during the cometabolic 2-CP consumption with increasing ammonium (NH4+) concentrations in the SBR showed the presence of 39 different species of which 10 were always present in all cycles. Fifty-five percent of the species found were grouped as Proteobacteria (45% as β-proteobacteria and 10% as γ-proteobacteria class), 30% as Acidobacteria, and 15% as Deinococcus-Thermus phyla. NH4+ and cometabolic 2-CP consumption could be related to the presence and permanence of ammonium-oxidizing bacteria (AOB) species and heterotrophic bacteria, while the complete nitrification to the presence of nitrite-oxidizing bacteria (NOB) species. A correlation analysis showed that the complete and stable nitrifying performance (NH4+ consumption efficiencies (ENH4+-N) > 99% and nitrate production yields (YNO3−-N) between 0.93 and 0.99), as well as the increase in specific rates (ammonium (qNH4+-N) and 2-CP (q2-CP-C) consumption and nitrate production (qNO3−-N)), was associated with the homogeneity of the bacterial community (J index = 0.99). The increase in the proportion of individuals of AOB species such as Nitrosomonas oligotropha and Nitrosomonas marina was associated with the increase in qNH4+-N (r ≥ 0.69) and q2-CP-C (r ≥ 0.64) and, therefore, with the 2-CP cometabolic consumption in the SBR. Finally, the increase in the proportion of individuals of heterotrophic species such as Dokdonella ginsengisoli, Deinococcus peraridilitoris, Truepera radiovictrix, and Stenotrophobacter terrae was associated with the increase in q2-CP-C (r ≥ 0.59).Key points• Thirty-nine bacterial species were identified in the nitrifying sludge population of the SBR.• β-Proteobacteria and Acidobacteria were the prevalent (85%) bacterial groups.• AOB and heterotrophic bacteria participate in NH4+ and cometabolic 2-CP consumption.Graphical abstract
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have