Abstract

ABSTRACTAn Fe-Al coating consisting of FeAl and Fe3Al was prepared on AISI 1045 steel by hot-dip aluminizing and subsequent high-temperature diffusion. Dry sliding wear tests were performed for Fe-Al coating against AISI 52100 steel under various sliding speeds and loads. During sliding, thin tribolayers formed on the worn surfaces of the Fe-Al coating. After wear, they were observed to be a nonoxidized mechanically mixed layer (MML) at 0.5 m/s, an oxide-containing MML at 0.75–2.68 m/s, and an in situ oxide layer at 4 m/s. The tribolayers presented a close relation with the wear behavior. Because of their different ingredients, structures, and types, the tribolayers resulted in significant changes in the wear behavior. At 0.75–2.68 m/s (except for 2.68 m/s, 40 N), the compact tribooxide layers exerted a protective function for Fe-Al coating to reduce the wear rate. However, for the tribolayers containing no or trace tribooxides at 0.5 m/s or the unstable ones formed at 2.68 m/s, 40 N and 4 m/s, no protection was presented. In these cases, the Fe-Al coating would be partly or totally ground off, thus presenting poor wear resistance at high wear rates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call