Abstract

Ion beam sputtering codeposition has been used to elaborate ceramic–metal (cermet) composite thin films consisting of copper nanoclusters embedded in an amorphous Si3N4 matrix. As prepared, the clusters have a size smaller than 3 nm and postirradiation by high energetic Ar+ ions leads to an homogenization of the clusters’ morphology and an increase of the clusters’ size to an average diameter of 4.5 nm. This work deals with the relation between the morphology of the clusters, characterized by extended x-ray absorption fine spectroscopy and grazing incidence small angle x-ray scattering, and the optical properties (obtained by spectroscopic ellipsometry) of the cermets, which are classically modeled with the help of the effective medium theory. In the case of the as-prepared sample, the Bruggeman effective medium theory has been successfully used. This comes from the fact that the clusters are sufficiently close to each other to create mutual interactions. On the other hand, the morphology of the postirradiated film is in agreement with the hypothesis made by the Maxwell–Garnett effective medium theory, and a resonance peak appears due to the surface plasmon excitation whose position depends on the cluster size.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.