Abstract

In mechanically ventilated patients with acute circulatory failure related to sepsis, we investigated whether the respiratory changes in arterial pressure could be related to the effects of volume expansion (VE) on cardiac index (CI). Forty patients instrumented with indwelling systemic and pulmonary artery catheters were studied before and after VE. Maximal and minimal values of pulse pressure (Pp(max) and Pp(min)) and systolic pressure (Ps(max) and Ps(min)) were determined over one respiratory cycle. The respiratory changes in pulse pressure (DeltaPp) were calculated as the difference between Pp(max) and Pp(min) divided by the mean of the two values and were expressed as a percentage. The respiratory changes in systolic pressure (DeltaPs) were calculated using a similar formula. The VE-induced increase in CI was >/= 15% in 16 patients (responders) and < 15% in 24 patients (nonresponders). Before VE, DeltaPp (24 +/- 9 versus 7 +/- 3%, p < 0.001) and DeltaPs (15 +/- 5 versus 6 +/- 3%, p < 0.001) were higher in responders than in nonresponders. Receiver operating characteristic (ROC) curves analysis showed that DeltaPp was a more accurate indicator of fluid responsiveness than DeltaPs. Before VE, a DeltaPp value of 13% allowed discrimination between responders and nonresponders with a sensitivity of 94% and a specificity of 96%. VE-induced changes in CI closely correlated with DeltaPp before volume expansion (r(2) = 0. 85, p < 0.001). VE decreased DeltaPp from 14 +/- 10 to 7 +/- 5% (p < 0.001) and VE-induced changes in DeltaPp correlated with VE-induced changes in CI (r(2) = 0.72, p < 0.001). It was concluded that in mechanically ventilated patients with acute circulatory failure related to sepsis, analysis of DeltaPp is a simple method for predicting and assessing the hemodynamic effects of VE, and that DeltaPp is a more reliable indicator of fluid responsiveness than DeltaPs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.