Abstract

To evaluate to which extent the systemic arterial pulse pressure could be used as a surrogate of cardiac output for assessing the effects of a fluid challenge and of norepinephrine. Observational study. Medical intensive care unit. Patients with an acute circulatory failure who received a fluid challenge (228 patients, group 1) or in whom norepinephrine was introduced or increased (145 patients, group 2). We measured the systolic, diastolic, and mean arterial pressure, pulse pressure, and the transpulmonary thermodilution cardiac output before and after the therapeutic interventions. In group 1, the fluid challenge significantly increased cardiac output by 24% ± 25%. It significantly increased cardiac output by ≥15% (+35% ± 27%) in 142 patients ("responders"). The fluid-induced changes in cardiac output were correlated with the changes in pulse pressure (r = .56, p < .0001), systolic arterial pressure (r = .55, p < .0001), diastolic arterial pressure (r = .37, p < .0001), and mean arterial pressure (r = .52, p < .0001). At multivariate analysis, changes in pulse pressure were significantly related to changes in stroke volume (multiple r = .52) and to age (r = .12). A fluid-induced increase in pulse pressure of ≥17% allowed detecting a fluid-induced increase in cardiac output of ≥15% with a sensitivity of 65[56-72]% and a specificity of 85[76-92]%. The area under the receiver operating characteristic curves for the fluid-induced changes in mean arterial pressure and in diastolic arterial pressure was significantly lower than for pulse pressure. In group 2, the introduction/increase of norepinephrine significantly increased cardiac output by 14% ± 18%. The changes in cardiac output induced by the introduction/increase in the dose of norepinephrine were correlated with the changes in pulse pressure and systolic arterial pressure (r = .21 and .29, respectively, p = .001) but to a significantly lesser extent than in group 1. Pulse pressure and systolic arterial pressure could be used for detecting the fluid-induced changes in cardiac output, in spite of a significant proportion of false-negative cases. By contrast, the changes in pulse pressure and systolic arterial pressure were unable to detect the changes in cardiac output induced by norepinephrine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call