Abstract
The interaction between myocardial function, oxygen consumption and energy production was examined in the left ventricular myocardium during various physiological conditions. Myocardial function was measured by both LV dP/dTmax and by local contractile tension. Coronary blood flow was measured from the coronary sinus; regional coronary blood supply was recorded using a thermistor placed on the epicardial surface. Intracellular oxygen balance was estimated using NADH fluorescence. Myocardial oxygen consumption and utilization of glucose, pyruvate, lactate and free fatty acids were calculated from their concentrations in the arterial and coronary sinus blood. The effects of tachycardia at 180 and 240 bpm, noradrenaline infusion (25 micrograms kg-1 min-1), and increased coronary blood flow caused by hypopneic respiration were examined. During pacing, contractile force, coronary flow and NADH fluorescence increased. At 240 bpm, the lactate/pyruvate ratio increased from 5.98 +/- 0.92 to 8.76 +/- 1.41 and NADH fluorescence increased from 50 to 71.7 +/- 3.73 (as compared to control), indicating impairment of myocardial oxygenation. Hypopneic respiration produced a marked elevation of coronary blood flow. Both noradrenaline infusion and hypopnea produced a decrease in both NADH fluorescence and the lactate/pyruvate ratio. No significant difference was found between the FORCE/ATP, FORCE/MVO2 and ATP/MVO2 ratios during pacing and noradrenaline. However, during hypopnea, the amount of ATP apparently formed (as calculated by substrate utilization assuming the formation of 3 ATP molecules per oxygen) was disproportionately greater than contractile force and oxygen consumption. It is suggested that this discrepancy may be due to the uncoupling of oxidative phosphorylation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have