Abstract

We consider the Johnson noise of a two-dimensional, two-terminal electrical conductor for which the electron system obeys the Wiedemann-Franz law. We derive two simple and generic relations between the Johnson Noise temperature and the heat flux into the electron system. First, we consider the case where the electron system is heated by Joule heating from a DC current, and we show that there is a universal proportionality coefficient between the Joule power and the increase in Johnson noise temperature. Second, we consider the case where heat flows into the sample from an external source, and we derive a simple relation between the Johnson noise temperature and the heat flux across the boundary of the sample.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.