Abstract

Relaxor ferroelectrics show substantial responses to electric fields. The key difference from normal ferroelectrics is a temperature-dependent inhomogeneous structure and its dynamics. The lead-based complex perovskite Pb(In1/2Nb1/2)O3 is an intriguing system in which the inhomogeneous structure can be controlled by thermal treatment. Herein, we report investigations of the phase transitions in single crystals of Pb(In1/2Nb1/2)O3 via changing the degree of randomness in which In and Nb occupy the B site of the ABO3 perovskite structure. We studied the dynamic properties of the structure using inelastic light scattering and the static properties using diffuse X-ray scattering. These properties depend on the degree of randomness with which the B site is occupied. When the distribution of occupied In/Nb sites is regular, the antiferroelectric phase is stabilised by a change in the collective transverse-acoustic wave, which suppresses long-range ferroelectric order and the growth of the inhomogeneous structure. However, when the B site is occupied randomly, a fractal structure grows as the temperature decreases below T*~475 K, and nanosized ferroelectric domains are produced by the percolation of self-similar and static polar nanoregions.

Highlights

  • Relaxors are a special class of inhomogeneous systems in which mesoscopic polar regions induce giant dielectric and electromechanical responses[3,4,5]

  • In PIN, the arrangement of In and Nb can be controlled thermally, and the resulting structures are broadly classified into two categories: (1) a disordered PIN (D-PIN) in which In and Nb ions randomly occupy B sites in equal site numbers and (2) an ordered PIN (O-PIN) in which In and Nb ions are 1:1 ordered[23,24,25]

  • D-PIN exhibits relaxor behaviour with a freezing temperature at Tf ~ 240 K, whereas O-PIN exhibits a first-order antiferroelectric phase transition at TN ~ 430 K

Read more

Summary

Introduction

Relaxors are a special class of inhomogeneous systems in which mesoscopic polar regions induce giant dielectric and electromechanical responses[3,4,5]. We can understand relaxors in the same conceptual framework as BaTiO3, using the Comes–Guinnier–Lambert model in which the dynamic PNRs in relaxors correspond to nanometre-sized regions with time-dependent polarization[7,8,9,10]. We converted this image to a 2-bit image (Ising system), as shown, and we applied three successive 3 × 3 block-spin renormalisations [Fig. 1(c)–(e)]. By comparing D-PIN with O-PIN, we can discuss the crossover from a normal phase transition to relaxor freezing behaviour and clarify the connection between random electric fields and the origin of relaxors with wide distributions of static and dynamic fluctuations

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.