Abstract

AbstractWaterfowl migrations are large‐scale events that involve millions of birds moving over broad geographic extents, which make them difficult to quantify and study. Historically, wildlife managers have relied mostly on field surveys, such as visual counts from the ground or air that sample at small spatial or temporal extents, or both. Combining field surveys with remote sensing data comprehensively collected over large spatial extents at high temporal frequency may improve the study of migrating waterfowl distributions. We tested the strength of the relationship between broad‐scale weather surveillance radar data and fine‐scale field surveys of waterfowl abundance at wetlands within the Rainwater Basin of Nebraska, USA, from 2017–2019. Radar reflectivity of waterfowl at the peak exodus of evening flights was positively correlated with diurnal waterfowl count data, although there was unexplained variation in the relationship. The association was also very similar across various time scales ranging from daily to monthly averages of waterfowl abundance. We suggest that human‐based ground surveys can calibrate and leverage more comprehensive remote sensing data to get a broad understanding of waterfowl distributions during migration. Several confounding factors, such as spatial displacement between radar and survey observation, individual variation in orientation and body size, and identification of avian species sampled by radar, remain on the path to improving radar‐based waterfowl estimates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.