Abstract

The current network of weather surveillance radars within the United States readily detects flying birds and has proven to be a useful remote-sensing tool for ornithological study. Radar reflectivity measures serve as an index to bird density and have been used to quantitatively map landbird distributions during migratory stopover by sampling birds aloft at the onset of nocturnal migratory flights. Our objective was to further develop and validate a similar approach for mapping wintering waterfowl distributions using weather surveillance radar observations at the onset of evening flights. We evaluated data from the Sacramento, CA radar (KDAX) during winters 1998–1999 and 1999–2000. We determined an optimal sampling time by evaluating the accuracy and precision of radar observations at different times during the onset of evening flight relative to observed diurnal distributions of radio-marked birds on the ground. The mean time of evening flight initiation occurred 23 min after sunset with the strongest correlations between reflectivity and waterfowl density on the ground occurring almost immediately after flight initiation. Radar measures became more spatially homogeneous as evening flight progressed because birds dispersed from their departure locations. Radars effectively detected birds to a mean maximum range of 83 km during the first 20 min of evening flight. Using a sun elevation angle of −5° (28 min after sunset) as our optimal sampling time, we validated our approach using KDAX data and additional data from the Beale Air Force Base, CA (KBBX) radar during winter 1998–1999. Bias-adjusted radar reflectivity of waterfowl aloft was positively related to the observed diurnal density of radio-marked waterfowl locations on the ground. Thus, weather radars provide accurate measures of relative wintering waterfowl density that can be used to comprehensively map their distributions over large spatial extents.

Highlights

  • The current United States network of weather surveillance radars known as WSR-88D (Weather Surveillance Radar 1988 Doppler) or NEXRAD readily detects biological targets aloft, and has proven to be a useful remote-sensing tool for ornithological study [1,2,3,4,5]

  • Buler and Diehl [10] used data collected at evening exodus to demonstrate that radar reflectivity measures are strongly correlated with ground observations of migrant landbird densities, and provide relative bird density measures that can be quantitatively compared across the radar area after being adjusted for biases caused by the height distribution of birds in the air and radar beam geometry

  • Field-feeding species such as mallards (Anas platyrhynchos) and northern pintails (A. acuta) regularly engage in flights between habitats used mainly for resting and those used for feeding [14]. Dynamics of these feeding flights have been studied throughout North America, including the agricultural/wetland habitat systems of the West Gulf Coastal Plain and the Central Valley of California (CVC)

Read more

Summary

Introduction

The current United States network of weather surveillance radars known as WSR-88D (Weather Surveillance Radar 1988 Doppler) or NEXRAD ( generation RADar) readily detects biological targets aloft (e.g., birds, bats, and arthropods), and has proven to be a useful remote-sensing tool for ornithological study [1,2,3,4,5]. Because nocturnal migratory flights are closely synchronized to the elevation of the sun [11,12,13], birds are typically sampled using a single nearinstantaneous radar scan collected during the abrupt en masse exodus of birds on a given night. Field-feeding species such as mallards (Anas platyrhynchos) and northern pintails (A. acuta) regularly engage in flights between habitats used mainly for resting and those used for feeding [14]. Dynamics of these feeding flights have been studied throughout North America, including the agricultural/wetland habitat systems of the West Gulf Coastal Plain and the Central Valley of California (CVC). Cox and Afton [20] noted that the evening flights of northern pintails in Louisiana averaged 22 minutes after sunset, while Baldasarre and Bolen [18] observed that the evening departures of several field-feeding duck species wintering in Texas averaged 2562 (SE) min after sunset

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call