Abstract

Abstract A comparison of Young's moduli and Poisson's ratios obtained from ultrasonic laboratory measurements with static moduli obtained under identical stress conditions shows that the Young's moduli are 1 to 6 times higher under ultrasonic loading conditions. A comparison of these two laboratory measured quantities with log derived moduli measured at 20 KHz indicates that Eultrasonic> Esonic > Estatic, The clay content and porosity of the samples varied from 1 % to 54.5% and 3% to 17.5%, respectively. This clearly suggests that a wide variety of sandstones behave in a viscoelastic manner. The magnitude of the variation with frequency is a function of the clay content, grain size, shape of intergranular contacts, mineralogy and fluid saturations. A model is presented that describes this observed viscoelastic behavior. The measured static moduli are a function of the sample length. This effect is investigated in some detail. The reported static moduli were obtained at L/d ratios of 2. When comparing log measurements to core, two inherent problems were encountered: depth correlation and sample size. These effects need to be properly accounted for when comparing logs with cores.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call