Abstract

A SAT graph G(Φ) of a satisfiability instance Φ consists of a vertex for each clause and a vertex for each variable, where there exists an edge between a clause vertex and a variable vertex if and only if the variable or its negation appears in that clause. Many satisfiability problems, which are NP-hard, become polynomial-time solvable when the SAT graph is restricted to satisfy some graph properties. A rich body of research attempts to narrow down the boundary between the NP-hardness and polynomial-time solvability of various satisfiability problems. In this paper, we examine planar satisfiability problems and leverage planar graph drawing algorithms to improve our understanding of these problems. A rich body of graph drawing algorithms exists to check whether a planar graph admits a drawing that satisfies certain drawing aesthetics. We show how the existing graph drawing knowledge could be used to establish sufficient conditions for a SAT instance to always be satisfiable and give algorithms to efficiently find a satisfying truth assignment. In some cases, our algorithm can find a truth assignment by setting a small number of variables to true, which relates to the satisfiability variants that seek to minimize the number of ones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call