Abstract
We relate Lp convergence of metric tensors or volume convergence to a given smooth metric to intrinsic flat and Gromov–Hausdorff convergence for sequences of Riemannian manifolds. We present many examples of sequences of conformal metrics which demonstrate that these notions of convergence do not agree in general even when the sequence is conformal, gj=fj2g0, to a fixed manifold. We then prove a theorem demonstrating that when sequences of metric tensors on a fixed manifold M are bounded, (1−1∕j)g0≤gj≤Kg0, and either the volumes converge, Volj(M)→Vol0(M), or the metric tensors converge in the Lp sense, then the Riemannian manifolds (M,gj) converge in the measured Gromov–Hausdorff and volume preserving intrinsic flat sense to (M,g0).
Submitted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have