Abstract

Proton binding by a soil fulvic acid, humic acid, and a set of size fractions of the humic acid was studied as a function of pH and ionic strength by potentiometric titrations. The negative charge of the humic substances resulting from deprotonation of acidic functional groups generally increased with increasing pH and increasing ionic strength. At any given pH and ionic strength, the fulvic acid fraction exhibited much higher negative charge than the humic acid fraction. For the size-fractionated humic acids, negative charge decreased steadily with increasing apparent molecular weight, as determined by size exclusion chromatography. Observed differences in proton binding by the various humic substances corresponded well to differences in functional group composition, which has been extensively characterized in a previous study using a combination of analytical techniques. The proton binding behavior of the humic substances was described very well by the consistent NICA-Donnan model. However, when all adjustable model parameters were determined using a least-squares minimization technique without introducing parameter constraints, the values of some parameters turned out physically and chemically unreasonable. Therefore, we propose to derive some model parameters from chemical characterization results obtained by size exclusion chromatography and solid-state 13C NMR spectroscopy. Using this approach, we obtained excellent descriptions of all titration data, and the model parameter values were more consistent and chemically reasonable. Our results demonstrate that characterization results of humic substances can be used in NICA-Donnan modeling to reduce the number of free fitting parameters without arbitrary constraints and, thereby, obtaining a more reliable database for environmental modeling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call