Abstract

Detonation synthesis of silicon carbide (SiC) nanoparticles from carbon liberated by negatively oxygen balanced explosives was evaluated in a 23 factorial design to determine the effects of three categorical experimental factors: (1) cyclotrimethylene-trinitramine (RDX)/2,4,6-trinitrotoluene (TNT) ratio, (2) silicon (Si) additive concentration, and (3) Si particle size. These factors were evaluated at low and high levels as they relate to the detonation performance of the explosive and the solid Si-containing phases produced. Detonation velocity and Chapman–Jouguet (C–J) detonation pressure, which were measured using rate stick plate dent tests, were evaluated. Solid detonation product mass, silicon carbide product concentration, and residual silicon concentration were evaluated using the x-ray diffraction analysis. The factors of Si concentration and the RDX:TNT ratio were shown to affect detonation performance in terms of detonation velocity and C–J pressure by up to 10% and 22%, respectively. Increased concentration of Si in the reactants improved the average SiC concentration in the detonation products from 1.9 to 2.8 wt. %. Similarly, increasing the ratio of RDX to TNT further oxidized detonation products and reduced the average residual Si remaining after detonation from 8.6 to 2.8 wt. %. A 70:30 mass ratio mixture of RDX to TNT loaded with 10 wt. % < 44 μm silicon powder produced an estimated 1.33 g of nanocrystalline cubic silicon carbide from a 150-g test charge. Using a lower concentration of added silicon with a finer particle size reduced SiC yield in the residue to 0.38 g yet improved the SiC to residual Si ratio to 1.64:1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.