Abstract

This paper investigates the role of structure on Young’s modulus of open cell materials of relative densities between 0.1 and 0.3. The cellular solid is obtained by generating mixture size of spherical voids using the Random Sequential Addition – RSA algorithm. The relative density of the material is controlled by increasing void number and overlap. Structural effects consider mainly a Gaussian distribution of spherical void size of varying width, distribution centre and void overlap distance. Finite element method is used to calculate effective Young’s modulus using a regular meshing scheme of 3D typical cellular solids and Conjugate Gradient solver. It is found that sphere overlap has the largest effect compared to sphere distribution width for a given density. A large scatter in the wall thickness distribution is predicted when overlapping is increased or when the width of sphere size distribution is decreased. Increased rigidity is found to be correlated to particular arrangement of mixture size spheres which is pointed out using the Pair Correlation Function. Experimental evidence of the role of void overlapping is treated in the case of bread crumbs structures determined using X-ray tomography. The scatter of effective Young’s modulus for a given relative density is sensitive to void overlapping.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call