Abstract
Surface instability, termed wrinkling, might occur in compressed bilayer systems constituted by an external rigid skin resting on an internal soft substrate, where wrinkling is favored by the rigidity contrast between the two layers. In this paper, the same instability mechanism is explored by considering a substrate characterized by an orthotropic elastic response. By varying the orientation of the principal axes of the substrate’s material, the critical strain of wrinkling and the wrinkles’ wavelength can be tuned during compression. Theoretical formulations for wrinkling are discussed along with the results obtained by linear bifurcation and geometrically nonlinear analyses carried out with two-dimensional finite element models. To experimentally validate the results, the intrinsic properties of Fused Deposition Modeling (FDM) 3D printing technology are leveraged: bilayer objects are manufactured by printing continuous outer shells (corresponding to the rigid skin) along the borders, while the inner raster is shaped with a porous infill pattern, forming a substrate with an orthotropic elastic response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.